Evaluación Genética de Caprinos de Angora

EEA Bariloche – Pilcaniyeu – Río Negro Informe Nº 2 (incluye nacimientos 2018)

Nicolás Giovannini Febrero 2020

Cabras Angora plantel INTA EEA Bariloche.

Ediciones
 Instituto Nacional de
 Tecnología Agropecuaria

INTRODUCCIÓN

El presente informe tiene como objetivo principal presentar el mérito genético de los caprinos de Angora candidatos al próximo servicio del Campo Anexo Pilcaniyeu de INTA EEA Bariloche. Con la información contenida en el informe más la inspección visual de los animales, los responsables del plan de mejoramiento genético podrán decidir los apareamientos según el tipo de progenie deseada.

En este caso se trata del segundo informe para el plantel de una raza que no tiene antecedentes de evaluación genética en el país. Fue necesario definir las características a evaluar y ajustar la metodología de acuerdo a la información disponible. A los fines de contar con antecedentes de lo realizado, el informe incluye detalles de la metodología empleada.

DATOS DE CAMPO

La predicción del mérito genético se basa en la utilización conjunta de los registros de producción y los registros genealógicos disponibles. Los registros comienzan con los nacimientos de 2000. En este informe se analizan los nacimientos vivos hasta el año 2018 inclusive. Se registraron datos de chivitos de ambos sexos y se dispone de información de su tipo de nacimiento. La distribución de registros anuales según sexo y tipo de nacimiento se presenta en la tabla 1.

Tabla 1. Nacimientos discriminados por año, sexo y tipo de parto

٨٣٥	NC	Se	хо	Tipo de Parto				
Año	NC	Hembra	Macho	simple	mellizo	trillizo		
2000	109	49	60	95	14			
2001	89	34	55	82	7			
2002	99	48	51	73	23	3		
2003	69	34	35	59	8	2		
2004	47	24	23	42	5			
2005	79	36	43	71	8			
2006	75	35	40	67	8			
2007	51	26	25	29	22			
2008	44	18	26	42	2			
2009	61	36	25	57	4			
2010	58	25	33	47	11			
2015	21	9	12	19	2			
2016	56	26	30	46	10			
2017	70	33	37	46	24			
2018	60	28	32	40	20			
Total	928	433	495	775	148	5		

NC: Número de chivitos/as nacidos vivos

En la tabla 1 se observan 5 trillizos, a los fines de los análisis esos chivitos serán tratados como mellizos. En 2011 el plantel se redujo considerablemente por causa de la caída de cenizas del volcán Puyehue. Desde ese año hasta el 2014 inclusive, el plantel inició un proceso de "recuperación" donde los registros fueron escasos y con mucho "ruido" ambiental. Recién en 2015, aunque con un número reducido de animales, se reestablecieron los protocolos tradicionales de registros.

Los chivitos fueron pesados al nacimiento (**PCN**), y a la esquila de 12 meses (**PCE**). En la esquila se registró además el Peso de Vellón Sucio (**PVS**) y se tomaron muestras de mohair de la zona del

costillar para ser analizadas en el laboratorio donde se obtuvieron los diámetros medios de fibra (**PDF**). Otros registros como Peso al nacimiento, peso al destete, contenido de fibras meduladas y contenido de kemp se encuentran en la base de datos para próximas evaluaciones.

PARÁMETROS GENÉTICOS

Se utilizaron los parámetros genéticos descriptos en la tabla 2. Con la acumulación de datos, en el futuro estos parámetros serán reestimados para fortalecer el sistema de evaluación.

Tabla 2. Parámetros genéticos. Heredabilidades (diagonal) y correlaciones genéticas debajo de la diagonal.

correlaciones geneticas assajs as la alagerial.							
	PCE	PDF	PVS				
PCE	0.30						
PDF	0.36	0.32					
PVS	0.30	0.27	0.35				

PCE: Peso corporal a la esquila, **PDF**: Promedio de diámetro de fibras, **PVS**: peso de vellón sucio

EVALUACIÓN GENÉTICA

Desvíos esperados en la progenie (DEP) y exactitudes (Ex).

Los méritos genéticos se presentan como desvíos esperados en la progenie (DEP). En un reproductor, representa el valor genético esperado en el promedio de sus crías y se expresa en la misma unidad de medida de la característica evaluada. Por ejemplo, un castrón con una DEP de 1.2 kg para PCE significa que se espera que su progenie pese en promedio 1.2 kg más que el promedio de la progenie de un castrón de DEP 0.0 kg. Esto siempre y cuando se lo aparee con hembras al azar. La confiabilidad o exactitud de la estimación de los DEP depende de la característica, la cantidad y la calidad de información disponible. En general, exactitudes mayores a 80 son consideradas altas y exactitudes menores a 60 son consideradas bajas.

Es normal que las exactitudes se presenten cerca del 80-90% para los castrones y alrededor del 60-70% para cabrillas y castroncitos con datos propios, pero algunos animales tienen exactitudes muy bajas (por falta de datos propios, por falta de parientes con información o por estar en grupos contemporáneos con escasa conexión genética) por lo que su evaluación debe ser tomada con precaución.

Una orientación sobre la exactitud de las evaluaciones de padres está dada por su número de hijos. Además, la distribución de hijos por padre y por año es un indicador de la capacidad de corrección por efecto año que tendrán los análisis. En la tabla 3 se presentan los padres de cabaña utilizados desde el servicio de 2015 con el número de hijos nacidos vivos (**NC**) en base al registro de PCN.

Tabla 3. Nº de crías por castrón por año

ID	Origen		NC			
	Origon	2015	2016	2017	2018	
1009	PIL	1				1
131	CAM	8				8
1019	PIL	1				1
175	CAM	1				1
7168	AUS		28			28
27	AUS		2	13		15
1013	PIL		4			4
725	AUS		4	11		15
1007	PIL		2			2
5007	PIL			13	15	28
5003	PIL			6	8	14
09.36	SUD			6	2	8
5.391	SUD			1	6	7
383	PIL			2		2
5011	PIL			2		2
05.385	SUD				8	8
6001	PIL				1	1
6005	PIL				12	12
TOTAL		11	40	54	52	157

Es fundamental para la evaluación utilizar machos "conectores" (2 al menos) entre años, con un buen número de crías en ambos períodos (>20). Puede observarse que los años 2015 y 2016 están "desconectados". Además, en general, los padres no tienen hijos suficientes para alcanzar niveles óptimos de exactitud.

Progreso genético

A partir de los registros de producción y de genealogía es posible calcular el valor genético para cada característica y para cada animal de la base de datos. Los DEP son comparables entre años por lo que es posible calcular una tendencia o progreso genético promediando estos valores para animales de un mismo año de nacimiento. Para calcularlo, al igual que los DEPs, se consideró al año 2015 como base de comparación, año en que se retomaron las evaluaciones genéticas. Los valores de cría (EBV) promedio para ese año se describen en la tabla 4.

Tabla 4. Valores de Cría (VC) promedio para el año base.

PCE	PVS	PDF		
-0.18 kg	-0.01 kg	-0.01 mic		

En la figura 1 podemos observar el progreso genético, expresado como valor de cría (EBV = DEP *2), desde los nacimientos de 2015 para las 3 características evaluadas.

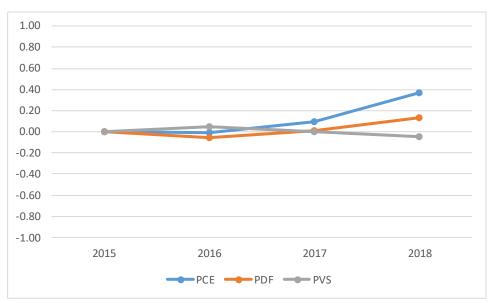


Figura 1. Progreso genético para Peso corporal a la esquila (PCE), Promedio de diámetro de fibras (PDF) y Peso de vellón sucio (PVS).

Listados de mérito genético

En las tablas 5, 6 y 7 se presentan los listados de mérito genético para Padres, Castroncitos y Cabrillas, respectivamente.

El resumen de padres puede presentar cambios año a año debido a la incorporación de nueva información, con los años se irá ganando robustez en la evaluación. En la medida en que se acumule información y se consoliden los procedimientos, la exactitud y calidad de los resultados mejorarán.

Conclusiones y sugerencias

Progresos genéticos

Los progresos genéticos de la figura 1 muestran un mantenimiento, sin cambios del nivel genético, del PVS y tendencias al incremento de PCE y PDF, siendo más importante en la primera.

En los últimos 3 servicios se han incorporado castrones de origen australiano y sudafricano sin evaluación genética previa. Estas incorporaciones son beneficiosas para incrementar la variabilidad genética, y a su vez impactan impredeciblemente en el progreso genético del plantel.

Padres de cabaña

Los castrones importados nacidos de embriones, tienen como patrón el aumentar el peso corporal, engrosar el mohair y bajar el peso de vellón. Sin embargo, estos resultados hay que tomarlos con precaución ya que presentan efectos ambientales que no pudieron ser removidos en la predicción de los valores genéticos (madres criollas, tratamientos nutricionales y cuidados particulares). Además, la exactitud de las predicciones es aún baja debido a la falta de hijos con registros productivos. A través del seguimiento de sus crías estos valores se ajustarán mejor en próximas evaluaciones.

De los castrones propios del plantel, el 6001 fue el castrón que mostró mejor desempeño genético dado por el balance entre las 3 características evaluadas. Aquí también la exactitud de las predicciones es aún baja.

Nuevos padres

Para evaluar mejor a los castrones importados es recomendable usarlos como padres (al menos dos) y que, en su origen, provengan de distintas líneas genéticas. En este sentido se recomienda para el servicio 2020 el uso de los siguientes castrones: 7041 (conector), 7051, 8033 y 8037.

Respecto a los castrones de origen de la cabaña, por su desempeño genético, se recomiendan los siguientes castrones: 7029 (conector), 7081 y 8061.

Madres y cabrillas

Refugar madres de dentición menor a la categoría "medio diente".

Se sugiere revisar a las cabrillas de mejores DEP y rechazar a las inferiores. Aquellas cabrillas con defectos fenotípicos también deben refugarse.

Futuras evaluaciones

Idealmente debe ponderarse cada DEP con su importancia económica y de acuerdo a un objetivo más global e integrador de selección diseñar un "índice de selección". Se realizará para la próxima evaluación el ejercicio de ponderación económica de cada característica evaluada para construir índices de selección que facilitan el proceso de selección.

También se empezará a incluir información del mérito genético para contenido de KEMP, Peso corporal al destete y prolificidad en madres.

La metodología utilizada responde a estándares internacionales (BLUP - Modelo Animal).

Tabla 5. Listado de padres con progenie 2015-2018 con sus DEP y exactitudes.

IDUI	ID	ORIGEN	PADRE	PCE	PDF	PVS	NC	depPCE ¹	depPDF ¹	depPVS ¹	Exactitud
20070010027	27	AUS					15	-0.69	-0.45	0.02	71
20070010725	725	AUS					15	-0.27	-0.18	0.13	71
20071017168	7168	AUS					28	-0.31	-0.33	0.12	72
20110111007	1007	PIL			19.8	0.9	2	-0.26	-0.03	0.08	36
20110111009	1009	PIL			18	0.8	1	-0.16	-0.06	0.07	27
20110111013	1013	PIL			19.6	0.7	4	0.10	0.46	-0.13	48
20110111019	1019	PIL			20.6	1.6	3	-0.16	0.08	-0.06	48
20110610131	131	CAM					10	-0.41	-0.08	-0.08	62
20110610175	175	CAM					2	0.30	-0.13	0.05	41
20150110383	0383	PIL	1019				2	-0.21	0.26	-0.14	61
20150115003	5003	PIL	1019	16	21.4	1	12	-0.18	-0.20	0.04	76
20150115007	5007	PIL	131	16.5	22.5	1	24	-0.90	-0.39	-0.07	80
20150115011	5011	PIL	175	13	20.6	0.9	2	0.09	-0.24	0.10	62
20150910936	09.36	SUD					8	2.74	1.37	-0.28	59
20150915385	05.385	SUD					7	2.85	1.37	-0.41	55
20150915391	05.391	SUD					7	2.01	0.78	-0.20	55
20160116001	6001	PIL	7168	21.5	22.7	1.31	1	0.07	-0.12	0.07	61
20160116005	6005	PIL	27	18	22.4	1.32	7	-0.76	-0.54	0.07	72

¹Prefijo "dep" corresponde al valor genético expresado en DEP.

En negrita padres utilizados en el último servicio.

Tabla 6. Datos productivos fenotípicos y genéticos - Castroncitos 2018.

ID		ORIGEN	PADRE	PCE	PDF	PVS	depPCE ¹	depPDF ¹	depPVS ¹	Exactitud
	8005	SUD	5.385	23.05	25.96	1.57	2.37	1.14	-0.26	60
	8007	SUD	5.385	30.54	28.69	1.6	2.87	1.17	-0.39	57
	8011	SUD	9.36	27.11	25.15	1.55	2.15	0.75	-0.08	58
	8013	PIL	5007	14.54	21.73	1.12	-0.80	-0.35	0.06	62
	8015	PIL	5007	14.7	22.37	1	-0.73	-0.26	-0.02	61
	8017	SUD	5.385	25.19	29.94	1.61	2.63	1.45	-0.49	60
	8019	PIL	5007	14.17	21.38	0.89	-0.89	-0.37	0.04	61
	8023	PIL	5007	19.44	24.31	1.58	-0.12	0.00	-0.09	62
	8025	PIL		15.41	24.04	1.08	-0.24	0.14	-0.09	55
	8029	SUD	5.385	18.89	26.26	1.3	1.86	1.01	-0.30	58
	8031	SUD	5.385	23.18	25.83	1.02	2.22	0.97	-0.30	58
	8033	SUD	9.36	26.07	27.42	1.58	2.23	1.03	-0.26	58
	8035	SUD	5.391	19.09	24.01	1.05	1.41	0.41	-0.08	62
	8037	SUD	5.391	23.16	20.05	1.24	1.50	0.06	0.20	62
	8041	PIL	5007	16.59	21.67	1.08	-0.47	-0.36	0.06	62
	8045	PIL		11.91	21.53	0.82	-0.90	-0.21	0.07	55
	8049	PIL	5003	12.62	22.24	1.09	-0.68	-0.18	0.04	61
	8053	PIL	6005	14.05	20.99	1.07	-0.36	-0.35	0.11	62
	8055	PIL	5003	13.91	22.38	1.18	-0.45	-0.15	0.01	63
	8057	PIL	5007	13.4	21.85	0.92	-0.77	-0.29	-0.06	68
	8061	PIL	6005	18.02	21.81	1.15	-0.27	-0.34	0.07	60
	8063	PIL	5007	14.93		0.94	-0.58	-0.07	-0.11	56
	8067	PIL	6005	11.33	20.68	0.88	-0.86	-0.36	0.06	63
	8073	PIL	6001	11.33	22.57	1.49	0.11	-0.03	0.06	60

¹Prefijo "dep" corresponde al valor genético expresado en DEP. En "**negrita**" castroncitos con mejor desempeño genético dentro de la característica.

Tabla 7. Datos productivos fenotípicos y genéticos - Cabrillas 2018.

ID		PADRE	ORIGEN	PCE	PDF	PVS	depPCE ¹	depPDF ¹	depPVS ¹	Exactitud
	8000	5.391	SUD	19.81	26.25	1.5	1.68	0.79	-0.26	57
	8004	5007	PIL	14.45	19.59	0.87	-0.66	-0.49	0.09	63
	8006	5.385	SUD	17.55	26.74	1.33	2.36	1.32	-0.39	60
	8008	5.391	SUD	19.89	25.91	1.61	1.67	0.76	-0.22	57
	8010	5.385	SUD	16.76	23.6	1.23	1.74	0.77	-0.15	57
	8012		PIL	12.59	22.08	1.06	-0.20	0.02	0.01	55
	8016	6005	PIL	13.28	20.89	1.13	-0.64	-0.38	0.06	62
	8018	5003	PIL	16.83	20.31	1.06	0.10	-0.34	0.17	61
	8020	5.391	SUD	18.02	22.89	1.3	1.63	0.42	-0.03	61
	8022	5.391	SUD	12.22	23.54	1.05	1.20	0.48	-0.11	61
	8024	5007	PIL	10.43	22.98	0.8	-0.61	-0.01	-0.17	61
	8026	6005	PIL	12.97	19.7	1.09	-0.65	-0.47	0.17	60
	8028		PIL	14.19	19.2	1.27	-0.20	-0.42	0.26	58
	8032	5007	PIL	9.92	21.92	0.85	-0.77	-0.14	-0.09	61
	8036	5003	PIL	12.28	22.06	1.04	-0.18	-0.05	-0.01	60
	8038		PIL	12.38	21.2	1.05	-0.22	-0.07	0.07	55
	8040	5003	PIL	13.81	22.64	1.12	0.15	0.02	-0.06	63
	8042	5003	PIL	11.48	20.09	0.91	-0.21	-0.21	0.07	63
	8044	5007	PIL	13.79	20.75	0.84	-0.07	-0.20	-0.02	61
	8052	6005	PIL	13.02	22.2	1.28	-0.27	-0.15	-0.01	60
	8056	6005	PIL	11.33	19.17	0.74	-0.61	-0.45	0.12	60

¹Prefijo "dep" corresponde al valor genético expresado en DEP. En "**negrita**" cabrillas con mejor desempeño genético dentro de la característica.

AGRADECIMIENTOS

A Ley Caprina, Programa Mohair por confiar en INTA Bariloche para la transferencia de embriones de origen sudafricano y su posterior evaluación genética.

A José María Garramuño, Luciano Hernández, Rubén Martínez y Gustavo del Castillo del Campo Anexo Pilcaniyeu de INTA EEA Bariloche.

A Macarena Bruno Galarraga, Jimena Fernández, Marcela Cueto y Alejandro Gibbons del grupo de reproducción de INTA EEA Bariloche.

CONTACTO

Lic. Gen. Nicolás Giovannini, MSc giovannini.nicolas@inta.gob.ar INTA EEA Bariloche Rio Negro, Argentina

Tel: +54 294 4422731 (int 4047)